Effective Restoration

Coastal Wetlands

Water Research Laboratory School of Civil and Environmental Engineering Presented by:

Prof. Will Glamore

Where should be restored?

How should it be restored?

When should it be restored?

Water Research Laboratory

Restoration Action Plans

4-47

Where should be restored?

How should it be restored?

When should it be restored?

How do incentives play a role in effective restoration?

Water Research Laboratory

'Red' Gold to 'Blue' Markets

Incentives for Effective Restoration?

• Stick:

- Punitive
- Reactive
- Government driven
- Promote status quo
- Same laws apply to restoration

Carrot:

- Incentivised
- Proactive
- Gov't regulate
- Market based scalability
- Can be done urgently

Effective Restoration?

Very Good
Good
Status Quo
Bad
Very Bad

Status Quo Scenario

Single Incentivised Scenario

Saltmars

Very Good

Good

No Change

Bad

Very Bad

Co-Benefit Restoration Scenario

Saltmars

Very Good

Good

No Change

Bad

Very Bad

Negative incentives have stopped degradation.

Positive incentives can foster on-ground actions.

Incentivised by:

- Growing restoration industry,
- Shifting community views,
- Political will,
- Tested methods,
- On-ground outcomes &
- Valuing multiple benefits.

Thank you

Effective Restoration

Three key points:

- Restoration has historically been driven by a single negative incentive (stick).
- 2. Multiple positive incentives (carrots) are being developed for restoration with different players involved.
- 3. If our aim to achieve scale, our strategies need to adapt.

Effective Restoration at Scale

Research

Extractive Sector Agricultural Sector Industrial Sector EPA Era Restoration industry? 2022 1800 1860 1950 1990

Review

Restoring estuarine ecosystems using nature-based solutions: Towards an integrated eco-engineering design guideline

Thomas Dunlop*, William Glamore, Stefan Felder

Water Research Laboratory, School of Civil and Environmental Engineering, UNSW Sydney, Manly Vale 2093, NSW, Australia

Water Resources Research

Research Article 🙃 Open Access 💿 🕟 🖠

Quantifying the Effects of Sea Level Rise on Estuarine Drainage Systems

K. Waddington X, D. Khojasteh, L. Marshall, D. Rayner, W. Glamore

Research article

Upscaling the remediation of acidic landscapes – the coastal floodplain prioritisation method

K. Waddington, A. Harrison, D. Rayner, T. Tucker, W. Glamore 🙎 🔀

Water Resources Research

Research Article 🙃 Open Access 💿 🚯

Estuarine Hypoxia—Identifying High Risk Catchments Now and Under Future Climate Scenarios

K. Waddington, A. Harrison, D. Rayner, T. Tucker, W. Glamore

Takeaway points

- Effective outcomes are:
 - Incentivised
 - Supported
 - Trusted
 - Proven
 - Targeted

K. Waddington X, D. Khojasteh, L. Marshall, D. Rayner, W. Glamore

Upscaling the remediation of acidic landscapes – the coastal floodplain prioritisation method

K. Waddington, A. Harrison, D. Rayner, T. Tucker, W. Glamore

communications

earth & environment

The evolving landscape of sea-level rise science from 1990 to 2021

Danial Khojasteh ^{1™}, Milad Haghani², Robert J. Nicholls ^{3™}, Hamed Moftakhari ⁴, Mahmood Sadat-Noori ¹, Katharine J. Mach⁵, Sergio Fagherazzi ⁶, Athanasios T. Vafeidis⁷, Edward Barbier⁸, Abbas Shamsipour9 & William Glamore1

Water Resources Research

Research Article ① Open Access ② ③ ⑤

Estuarine Hypoxia—Identifying High Risk Catchments Now and Under Future Climate Scenarios

K. Waddington, A. Harrison, D. Rayner, T. Tucker, W. Glamore

Review

Restoring estuarine ecosystems using nature-based solutions: Towards an integrated eco-engineering design guideline

Thomas Dunlop*, William Glamore, Stefan Felder

Water Research Laboratory, School of Civil and Environmental Engineering, UNSW Sydney, Manly Vale 2093, NSW, Australia

Review

Sea level rise impacts on estuarine dynamics: A review

Danial Khojasteh 🙎 🖾 , William Glamore 🙎 🖾 , Valentin Heimhuber 🖾 , Stefan Felder 🔀

Wastewater effluents cause microbial community shifts and change trophic status

J.E. Ruprecht a S S.C. Birrer S S S, K.A. Dafforn Sc, S.M. Mitrovic d, S.L. Crane e, E.L. Johnston b, F. Wemheuer b, A. Navarro b, A.J. Harrison a, I.L. Turner a, W.C. Glamore

Estuarine tidal range dynamics under rising sea levels

Danial Khojasteh , Shengyang Chen, Stefan Felder, Valentin Heimhuber, William Glamore

Published: September 20, 2021 • https://doi.org/10.1371/journal.pone.0257538

A global assessment of estuarine tidal response to sea level rise

Danial Khojasteh 🙎 🖾 , Stefan Felder 🖾 , Valentin Heimhuber 🖾 , William Glamore 🖾

(2) Integrated Eco-Design

Multi-Criteria Risk-Based Priority Assessment

(3) Future planning

Water Research Laboratory

Resource Economics

Spillage Economy

CLIMATE CHANGE Scenarios

Blue Carbon Saltmarsh

Mangroves

Frogs

Freshwater Flora

Fish

Migratory Birds

Neighbours

Endangered Birds

Catchment Impact Mosquitos

Buffer Zone

Good

No Change

Bad

Very Bad

Opportunities... (1) On-ground outcomes

